
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3604 19

Parallel Memory-Intensive MapReduce

Applications

Ramya.P
1
, Dr. V. Venkatesakumar

2

PG Scholar, Department of CSE, Anna University Regional Campus Coimbatore, Tamilnadu, India1

Assistant Professor, Department of CSE, Anna University Regional Campus Coimbatore, Tamilnadu, India2

Abstract: The Map Reduce platform has been widely used for large-scale data processing and analysis recently. It

works well if the hardware of a cluster is well configured. However, our survey has indicated that common hardware

configurations in small- and medium-size enterprises may not be suitable for such tasks. This situation is more

challenging for memory-constrained systems, in which the memory is a bottleneck resource compared with the CPU

power and thus does not meet the needs of large-scale data processing. The traditional high performance computing

(HPC) system is an example of the memory-constrained system according to our survey. The proposed new

MapReduce system, which aims to improve Map Reduce performance using efficient memory management. The

parallel multi-buffer technique to balance data production from CPU and data consumption of disk I/O’s, which

implements the non-blocking I/O. The parallel also caches the final merged files output by Map tasks in memory to

avoid re-reading them from disks before transferring them to remote reduce tasks. All Map/Reduce tasks in a physical

node run inside the execution engine, and therefore in a multi JVM, which is one of the key architectural differences

between multi JVM and Hadoop. A multi-threaded execution engine, which is based on Hadoop but runs in a multi
JVM on a node. In the execution engine, we have implemented the algorithm of hyper scheduling to job assignment,

such as sequential disk accessing, multi-cache and shuffling from memory, and solved the problem of full garbage

collection in the MJVM. We have conducted extensive experiments to compare parallel Mammoth with scheduling

algorithm against the native Hadoop platform. The results show that the modified mammoth system can reduce the job

execution time by more than 80 percent in typical cases, without requiring any modifications of the Hadoop programs.

Given the growing importance of supporting large-scale data processing and analysis and the proven success of the

MapReduce platform, the parallel Mammoth system can have a promising potential and impact.

Keywords: Map Reduce, HPC, CPU, Mammoth, Hadoop, HDFS, MJVM.

I. INTRODUCTION

Apache Hadoop has been generating a lot of headlines

lately. For those who are not aware, Hadoop is an open
source project that provides a distributed file system and

MapReduce framework for massive amounts of data. The

primary hardware used for Hadoop is clusters of

commodity servers. File sizes can easily be in the petabyte

range and use hundreds or thousands of computer servers.

Hadoop also has many components that live on top of the

core Hadoop file system (HDFS) and MapReduce

mechanism. Interestingly, HPC and Hadoop clusters share

some features, but how much crossover you will see

between the two disciplines depends on the application.

Hadoop strengths lie in the sheer size of data it can process
and its high redundancy and toleration of node failures

without halting user jobs.

MapReduce can be classified as a SIMD (single-

instruction, multiple-data) problem. Indeed, the map step
is highly scalable because the same instructions are carried

out over all data. Parallelism arises by breaking the data

into independent parts with no forward or backward

dependencies (side effects) within a Map step; that is, the

Map step may not change any data (even its own). The

reducer step is similar, in that it applies the same reduction

process to a different set of data (the results of the Map

step).

In Hadoop, the tasks are scheduled according to the

number of CPU cores, without considering other resources.

This scheduling decision leads to long waiting time of

CPUs, which influences the total execution time due to the

performance gap between the CPU and the I/O system. In

Hadoop, every task is loaded with a JVM. Every task has

an independent memory allocator.

A Hadoop task contains several phases that involve

memory allocation: task sort buffer, file reading and

writing, and application-specific memory usage.

Most memory allocation is pre-set with parameters in the
job configuration without considering the real tasks’

demand. Besides, it does not have a memory scheduler for

all the tasks in a Task Tracker. These designs will lead to

the problem of buffer concurrency among Hadoop tasks.

Another issue is that disk operations in Hadoop are not

scheduled cooperatively.

Every task reads and writes data independently according

to its demand without coordination, which potentially

leads to heavy disk seeks. For instance, in the merge and

shuffle phases, the overhead of uncoordinated disk seeks
and the contention in accesses are so big that the I/O wait

occupies up to 50 percent of the total time as observed,

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3604 20

which significantly degrades the overall system

performance.

Memory is an important resource to bridge the gap

between CPUs and I/O devices. However, we observed the

following main problems for the memory usage in Hadoop.

First, the memory management in Hadoop is rather coarse

grained. The memory size available for a Map or Reduce

task is set in a static configuration file, and is fixed at

runtime. Therefore, even after the Map tasks are

completed, the buffers used by those tasks cannot be used

by the Reduce tasks. Second, the memory mainly used by

the Map tasks is the intermediate buffer. When the buffer

cannot accommodate the intermediate data, the entire
intermediate data will be spilled to the local disk. For

example, if the intermediate data for a Map task are 100

MB, but the buffer size is only 80 MB, then the

intermediate data will be spilled to the disk as an 80 MB

file and a 20 MB file. As the result, the final merge-sort

phase in Hadoop will be largely affected by reading an 80

MB file from the disk. Finally, although different Map

tasks may produce the intermediate data with different

sizes (e.g., the “grep” application), Hadoop does not

provide the mechanism for the concurrently running Map

tasks to coordinate their memory usage with each other.

The I/O operations may also cause very inefficient usage

of resources. Firstly, a merge-sort algorithm is widely used

in Hadoop. In this algorithm, the operations of CPU

computing (sort) and disk spilling are mashed together.

There are a multitude of I/O waits during this procedure.

Secondly, parallel I/O is performed in Hadoop whenever

possible. Parallel I/O may cause vast disk seeks.

Especially, the situation may become even worse when

there is only one disk on a node. Finally, as mentioned

above, the Reduce tasks will have to pull the output files

of the Map tasks, which should be performed as early as
possible in order to improve the read performance.

II. RELATED WORK

The existing system is that these jobs run multiple tasks in

parallel and a job is sped up only when inputs of all such

parallel tasks are cached. Indeed, a single task whose input

is not cached can slow down the entire job. To meet this

“all-or-nothing” property, we have built PACMan, a

caching service that coordinates access to the distributed

caches. This coordination is essential to improve job

completion times and cluster efficiency. To this end, we

have implemented two cache replacement policies on top

of PACMan’s coordinated infrastructure LIFE that

minimizes average completion time by evicting large

incomplete inputs, and LFU-F that maximizes cluster
efficiency by evicting less frequently accessed inputs. In

exiting HaLoop, a modified version of the Hadoop

MapReduce framework that is designed to serve these

applications. HaLoop not only extends MapReduce with

programming support for iterative applications, it also

dramatically improves their efficiency by making the task

scheduler loop-aware and by adding various caching

mechanisms. We evaluated HaLoop on real queries and

real datasets. Compared with Hadoop, on average,

HaLoop reduces query runtimes by 1.85, and shuffles only
4% of the data between mappers and reducers.

The memory management in Mammoth and Spark are

rather different. Mammoth is based on Map- Reduce. We

have carefully analysed the characteristics of memory

usage in different phases of the MapReduce framework,

and designed a novel rule-based heuristic to prioritize

memory allocations and revocations among execution

units (mapper, shuffler, reducer, etc.). In this way, we can

maximize the holistic benefits of the Map/Reduce job

when scheduling each memory unit. In Spark, the memory

can be used for the resilient distributed data sets (RDD)
cache and running the framework itself. As for the RDD

cache, it depends on the users themselves when and how

the data are cached, which increases the uncertainty of the

memory usage. For the iterative and the interactive

applications, caching the frequently used RDDs will

significantly improve the applications performance.

However, for many batch processing applications, the

RDD cache cannot exhibit its advantages, and therefore

those applications can only rely on the memory

management in the Spark framework itself. Spark directly

requests and revokes the memory from the JVM, and does
not have a global memory manager in the application level.

Spark uses the hash table to aggregate the data, which is

different from the sort way used by Mammoth and Hadoop.

When the memory is sufficient, hash will certainly be

quicker than sort. However, when the memory is

insufficient, it will have to spill the data to disks, and its

performance will decrease significantly. Thanks to the

holistic manner of memory usage, Mammoth can adapt

much better to various memory situations, even when the

memory is insufficient. On the contrary, the performance

achieved by Spark is excellent when there is the sufficient

memory, but not so when the memory is insufficient.

Spark and Mammoth are different. Spark writes the data to

the disk on one side and reads them from the disk on the

other, while Mammoth stores the Map tasks results in the

Send Buffer, and sends them to the Reduce Tasks Receive

Buffer directly (Mammoth will write the data in the Send

Buffer to the disks only for the purpose of fault tolerance).

Another existing system use Main Memory Map Reduce

(M3R) is a new implementation of the Hadoop Map

Reduce (HMR) API targeted at online analytics on high

mean-time-to-failure clusters.

It does not support resilience, and supports only those

workloads which can fit into cluster memory. In return, it

can run HMR jobs unchanged -- including jobs produced

by compilers for higher-level languages such as Pig, Jaql,

and System ML and interactive front-ends like IBM Big

Sheets while providing significantly better performance

than the Hadoop engine on several workloads (e.g. 45x on

some input sizes for sparse matrix vector multiply). M3R

also supports extensions to the HMR API which can

enable Map Reduce jobs to run faster on the M3R engine,
while not affecting their performance under the Hadoop

engine.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3604 21

III. PROPOSED SYSTEM

MapReduce approach aiming to maximize data locality

and task parallelism of MapReduce applications on

Hadoop. Reuse and adapt an efficient MapReduce

implementation for shared memory multiprocessor to

Hadoop, called MJVM (multi JVM). MapReduce on

multicore and aggressively exploits task parallelism and

data locality on multicore. The proposed scheduling

algorithm and find the most suitable runtime environment

for execution on datasets of varying sizes. The proposed

design a novel parallel memory allocation and revocation

among execution units (mapper, shuffler, reducer, etc.), to

maximize the holistic benefits of the Map/Reduce job
when scheduling each memory unit.

A. Load dataset from HDFS

1) To start the file read operation, client opens the

required file by calling open() on Filesystem object

which is an instance of DistributedFileSystem. Open

method initiate HDFS client for the read request.

2) DistributedFileSystem interacts with Namenode to get

the block locations of file to be read. Block locations

are stored in metadata of name node. For each block,

Namenode returns the sorted address of Datanode that
holds the copy of that block. Here sorting is done

based on the proximity of Data node with respect to

Namenode, picking up the nearest Data node first.

3) Distributed File System returns an FS Data Input

Stream, which is an input stream to support file seeks

to the client. FS Data Input Stream uses a wrapper

DFS Input Stream to manage I/O operations over

Name node and Data node. Following steps are

performed in read operation.

a) Client calls read() on DFS Input Stream.

DFSInputStream holds the list of address of block

locations on Datanode for the first few blocks of the file. It
then locates the first block on closest Datanode and

connects to it.

b) Block reader gets initialized on target Block/Datanode

along with below information:

 Block ID.

 Data start offset to read from.

 Length of data to read.

 Client name.

c) Data is streamed from the Datanode back to the client in

form of packets, this data is copied directly to input buffer

provided by client’s client is reading and performing
checksum operation and updating the client buffer

d) Read () is called repeatedly on stream till the end of

block is reached. When end of block is reached
DFSInputStream will close the connection to Datanode

and search next closest Datanode to read the block from it.

4) Blocks are read in order, once DFSInputStream done

through reading of the first few blocks, it calls the

Namenode to retrieve Datanode locations for the next

batch of blocks.

5) When client has finished reading it will call Close()

on FSDataInputStream to close the connection.

6) If Datanode is down during reading or

DFSInputStream encounters an error during
communication, DFSInputStream will switch to next

available Datanode where replica can be found.

DFSInputStream remembers the Datanode which

encountered an error so that it does not retry them for

later blocks.

B. Dynamic Slot allocation for MAP/Reduce

MapReduce suffers from a under-utilization of the

respective slots as the number of map and reduce tasks

varies over time, resulting in occasions where the number

of slots allocated for map/reduce is smaller than the

number of map/reduce tasks. Our dynamic slot allocation
policy is based on the observation that at different period

of time there may be idle map (or reduce) slots, as the job

proceeds from map phase to reduce phase. We can use the

unused map slots for those overloaded reduce tasks to

improve the performance of the MapReduce workload,

and vice versa. For example, at the beginning of

MapReduce workload computation, there will be only

computing map tasks and no computing reduce tasks, i.e.,

all the computation workload lies in the map-side. In that

case, we can make use of idle reduce slots for running map

tasks. That is, we break the implicit assumption for current
MapReduce framework that the map tasks can only run on

map slots and reduce tasks can only run on reduce slots.

Instead, we modify it as follows: both map and reduce

tasks can be run on either map or reduce slots.

However, there are two challenges that should be

considered as follows:

1) Intra-phase dynamic slot allocation. Each pool is split

into two sub-pools, i.e., map-phase pool and reduce-

phase pool. At each phase, each pool will receive its

share of slots. An overloaded pool, whose slot

demand exceeds its share, can dynamically borrow
unused slots from other pools of the same phase. For

example, an overloaded map-phase Pool 1 can borrow

map slots from map-phase Pool 2 or Pool 3 when Pool

2 or Pool 3 is under-utilized, and vice versa, based on

max-min fair policy.

2) Inter-phase dynamic slot allocation. After the

intraphase dynamic slot allocation for both the map-

phase and reduce-phase, we can now perform

dynamic slot allocation across typed phases. That is,

when there are some unused reduce slots at the reduce

phase, and the number of map slots at the map phase
is insufficient for map tasks, it will borrow some idle

reduce slots for map tasks, to maximize the cluster

utilization, and vice versa.

3) Memory Optimization
The Multi JVM that allows the correct functioning of the

Hadoop jobs. To summarize:

 Use the latest (stable) Linux distribution that allows

for the correct functioning of the Hadoop jobs

 Use the latest (stable) Hadoop distribution for the

Hadoop workload at hand

 Use the M JVM and 3d-party libraries that the

underlying Hadoop workload depends on

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3604 22

Reader and Spiller to overlap the I/O operations mainly

use the parallel multi-buffer. However, it is likely that the
CPU computation or the disk I/O operations become the

performance bottleneck when both CPU computation and

I/O operations are being performed. For example, if the

CPU produces the data faster than the disk I/O, the disk

I/O becomes the performance bottleneck and the data will

accumulate in the buffer queue. Otherwise, the CPU

computation is the bottleneck. This is the reason why

every queue in Spiller or Reader has a threshold memory

size of 10 MB by default. Once the size of the

accumulated data exceeds the threshold of the queue, the

CPU will be blocked until there is the spare space in the

queue. Once there are the data added to the queue, it will
be written to the disk soon. The situation for Reader is the

same, and therefore its discussion is omitted.

The Scheduler executes as a parallel model (i.e., a multi

instance) in the execution engine. A simple design is to

design a parallel component that is responsible for all

memory allocations and revocations. However, such a

design will cause the Cache Scheduler to become a

performance bottleneck at runtime. This is because the

cache scheduler must interact with the map/reduce tasks at

runtime to assign and recycle memory, and the interactions
can be very frequent.

C. Data Optimization

Dynamic job priorities are used in HSA for reducing the

latency of variable length concurrent jobs, while

maintaining data locality. The dynamic scheduling

algorithm considers the estimated runtime, job size, and

waiting time of the job in the queue. The waiting time is

increased as the job waits in the queue, whereas the

remaining size of the job is reduced when its individual

tasks are completed.

HYBRID SCHEDULING ALGORITHM (HCA)

Based on the experimental results and analysis, we

propose a hybrid scheduler for scalable and heterogeneous

Hadoop systems. Propose a Hybrid Scheduler algorithm

based on dynamic priority in order to reduce the latency

for variable length concurrent jobs, while maintaining data

locality.

Input: Q: queue of incoming jobs; Inputload: number of

clients for transactional or data size for MapReduce job; P

CLUSTER: cluster of physical nodes; V CLUSTER:
cluster of virtual nodes; JCTdesired[]: vector of jobs

desired completion times.

1: for each job Ji in Q=J1,J2,...,Jn do

2: if Ji ∈ transactional workload then

3: Place Ji on V CLUSTER

4: else if Ji ∈ batch MapReduce workload then

5: Profile Ji using MJVM Algorithm 1 to obtain the

vector of estimated job completion time

 (JCTestimated[]).

6: if JCTestimated[i] ≥ JCTdesired[i] then
7: Place Ji on P CLUSTER

8: else

9: Place Ji on V CLUSTER

10: end if
11: end if

12: return jobs assigned to P CLUSTER and V CLUSTER

13: end for

The dynamic priorities can accommodate multiple task

lengths, job sizes, and job waiting times by applying a

MJVM for job task processor assignment. The estimated

runtime of Map and Reduce tasks are provided to the HCA

dynamic priorities from the historical Hadoop log files. In

addition to dynamic priority, we implement a reordering of

task processor assignment to account for data availability

to automatically maintain the benefits of data locality in
this environment.

IV. EXPERIMENTAL RESULTS

The size of intermediate data has a big impact on

performance of Hadoop. Three typical built-in benchmark

applications in Hadoop are used in these experiments:

Word Count without Combiner, Sort and Word-Count

with combiner (WCC). These three benchmarks represent

different relations between intermediate data and input

data. Word Count without combiner, Sort, and Word-
Count with combiner represent the cases where the size of

intermediate data is larger than, equal to and smaller than

the size of input data, respectively.

WordCount is a canonical MapReduce application, in

which the Map function translates every word in the input

data to a <word; 1> pair in the intermediate data and the

Reduce function sums the word’s occurrences and

transmits a <word;N> pair. WordCount without combiner

refers to this version of WordCount. Suppose that the

average length of the words is x bytes. In the intermediate

data, the value of the <key; value> pair is an integer and
its length is 4 bytes in Java. Then the ratio between the

size of the intermediate data and the size of the input data

is 4 x.

The Word Count with Combiner refers to Word Count

application with a combiner function. The combiner

function aggregates the Map task’s results by summing up

the word’s occurrences and transmitting a <word;N> pair

for a map task. Based on this function, the intermediate

data will be <word;N> pairs, which will be smaller than

the input words. Sort is the useful measurement of
MapReduce performance, in which the MapReduce

framework will sort the data automatically, and the Map

function just transmits all the input <key; value> items as

the intermediate items.

TABLE I

COMPARE PERFORMANCE RELATIVE TO

AVAILABLE MEMORY

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3604 23

Fig. 1 Performance relative to available memory.

TABLE III

THE PERFORMANCE RELATIVE TO

INTERMEDIATE DATA SIZE FOR WC

Fig. 2 Compare Job execution Time for WC

TABLE IIIII

PERFORMANCE COMPARISON AMONG SPARK,

HADOOP, MODIFIED MAMMOTH AND PROPOSED

Fig. 3 Performance comparison among Spark, Hadoop,

Mammoth and Proposed

The proposed system will compare the performance of

Modified Mammoth and Hadoop in terms of i) job

execution time, ii) CPU utilization, and iii) I/O utilizations.

Random writer (native in Hadoop) produces the input data
set of Sort. The size of the data set for Sort is 320 GB, 5

GB for each slave node. The input data set for Word

Count is produced by random text writer (native in

Hadoop too), and the size is also 320 GB with 5 GB for

each slave node. Each job is run independently for three

times and the collected results are then averaged.

V. CONCLUSIONS

Multi JVM based Hybrid scheduling algorithm, is

presented for the Hadoop MapReduce environment. Show

how the default parameters quickly resolve the data

dependence between the Map and Reduce phases by

improving the wait time of the last Map task on average.

Additionally, we show simulation analysis of the optimal

service level value and policies for overall performance as

well as response time under a variety of conditions. In

conclusion, MJVM is a fast and flexible scheduler that

improves response time for multi-user Hadoop

environments.

A new research angle along this research direction is that

we still manage the memory in the application level, but

try to manage the memory opportunistically instead of

carefully crafting the memory usage as we did in proposed.

In the further, we plan to design and implement the

opportunistic approach to utilize the memory in proposed

only focuses on the disk I/O currently. We plan to

integrate the support of the network I/O into proposed in

the future.

REFERENCES

[1]. G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S.

Kandula, S. Shenker, and I. Stoica, “PACMan: Coordinated

memory caching for parallel jobs,” in Proc. Symp. Netw. Syst. Des.

Implementation, 2012, p. 20

[2]. Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop:

Eficient iterative data processing on large clusters,” presented at the

Int. Conf. Very Large Data Bases, Singapore, 2010.

[3]. J. Dean and S. Ghemawat, “MapReduce: Simplified data processing

on large clusters,” in Proc. USENIX Symp. Oper. Syst. Des.

Implementations, 004, p. 10.

[4]. B. Hindman, A. Konwinski, MateiZaharia, A. Ghodsi, A. D. Joseph,

R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-

grained resource sharing in the data center,” in Proc. Symp. Netw.

Syst. Des. Implementation, 2011, p. 8.

[5]. T. Hoefler, J. Dongarra, and A. Lumsdaine, “Towards efficient

mapreduce using MPI,” in Proc. 16th Eur. PVM/MPI Users’ Group

Meeting in Recent Adv. Parallel Virtual Mach. Message Passing

Interface, 2009, pp. 240–249.

[6]. U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A

petascale graph mining system implementation and observations,”

in Proc. IEEE Int. Conf. Data Mining, 2009, pp. 229–238.

[7]. M. V. Neves, T. Ferreto, and C. D. Rose, “Scheduling mapreduce

jobs in HPC clusters,” in Proc. Eur. Conf. Parallel Distrib. Comput.,

2012, pp. 179–190.

[8]. A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R.

N.Mysore, A. Pucher, and A. Vahdat, “ThemisMR: An i/o-efficient

mapreduce,” in Proc. ACM Symp. Cloud Comput., 2012.

[9]. M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,

“Omega: Flexible, scalable schedulers for large compute clusters,”

in Proc. Eur. Conf. Comput. Syst., 2013, pp. 351–364.

[10]. A. Shinnar, D. Cunningham, and B. Herta, “M3R: Increased

performance for in-memory Hadoop jobs,” in Proc. Int. Conf. Very

Large Data Bases, 2012, pp. 1736–1747.

0
2
4
6
8

10

128 64 48 32 16 8C
o

m
p

le
ti

o
n

 T
im

e(
s)

Memory(GB)

Hadoop

Mammoth

Proposed

