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Abstract: The Map Reduce platform has been widely used for large-scale data processing and analysis recently. It 

works well if the hardware of a cluster is well configured. However, our survey has indicated that common hardware 

configurations in small- and medium-size enterprises may not be suitable for such tasks. This situation is more 

challenging for memory-constrained systems, in which the memory is a bottleneck resource compared with the CPU 

power and thus does not meet the needs of large-scale data processing. The traditional high performance computing 

(HPC) system is an example of the memory-constrained system according to our survey. The proposed new 

MapReduce system, which aims to improve Map Reduce performance using efficient memory management. The 

parallel multi-buffer technique to balance data production from CPU and data consumption of disk I/O’s, which 

implements the non-blocking I/O. The parallel also caches the final merged files output by Map tasks in memory to 

avoid re-reading them from disks before transferring them to remote reduce tasks. All Map/Reduce tasks in a physical 

node run inside the execution engine, and therefore in a multi JVM, which is one of the key architectural differences 

between multi JVM and Hadoop. A multi-threaded execution engine, which is based on Hadoop but runs in a multi 
JVM on a node. In the execution engine, we have implemented the algorithm of hyper scheduling to job assignment, 

such as sequential disk accessing, multi-cache and shuffling from memory, and solved the problem of full garbage 

collection in the MJVM. We have conducted extensive experiments to compare parallel Mammoth with scheduling 

algorithm against the native Hadoop platform. The results show that the modified mammoth system can reduce the job 

execution time by more than 80 percent in typical cases, without requiring any modifications of the Hadoop programs. 

Given the growing importance of supporting large-scale data processing and analysis and the proven success of the 

MapReduce platform, the parallel Mammoth system can have a promising potential and impact. 
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I. INTRODUCTION 
 

Apache Hadoop has been generating a lot of headlines 

lately. For those who are not aware, Hadoop is an open 
source project that provides a distributed file system and 

MapReduce framework for massive amounts of data. The 

primary hardware used for Hadoop is clusters of 

commodity servers. File sizes can easily be in the petabyte 

range and use hundreds or thousands of computer servers. 

Hadoop also has many components that live on top of the 

core Hadoop file system (HDFS) and MapReduce 

mechanism. Interestingly, HPC and Hadoop clusters share 

some features, but how much crossover you will see 

between the two disciplines depends on the application. 

Hadoop strengths lie in the sheer size of data it can process 
and its high redundancy and toleration of node failures 

without halting user jobs.  
 

MapReduce can be classified as a SIMD (single-

instruction, multiple-data) problem. Indeed, the map step 
is highly scalable because the same instructions are carried 

out over all data. Parallelism arises by breaking the data 

into independent parts with no forward or backward 

dependencies (side effects) within a Map step; that is, the 

Map step may not change any data (even its own). The 

reducer step is similar, in that it applies the same reduction 

process to a different set of data (the results of the Map 

step). 

 
 

In Hadoop, the tasks are scheduled according to the 

number of CPU cores, without considering other resources. 

This scheduling decision leads to long waiting time of 

CPUs, which influences the total execution time due to the 

performance gap between the CPU and the I/O system. In 

Hadoop, every task is loaded with a JVM. Every task has 

an independent memory allocator.  

 

A Hadoop task contains several phases that involve 

memory allocation: task sort buffer, file reading and 

writing, and application-specific memory usage.  
 

Most memory allocation is pre-set with parameters in the 
job configuration without considering the real tasks’ 

demand. Besides, it does not have a memory scheduler for 

all the tasks in a Task Tracker. These designs will lead to 

the problem of buffer concurrency among Hadoop tasks. 

Another issue is that disk operations in Hadoop are not 

scheduled cooperatively.  

 

Every task reads and writes data independently according 

to its demand without coordination, which potentially 

leads to heavy disk seeks. For instance, in the merge and 

shuffle phases, the overhead of uncoordinated disk seeks 
and the contention in accesses are so big that the I/O wait 

occupies up to 50 percent of the total time as observed, 
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which significantly degrades the overall system 

performance. 
 

Memory is an important resource to bridge the gap 

between CPUs and I/O devices. However, we observed the 

following main problems for the memory usage in Hadoop. 

First, the memory management in Hadoop is rather coarse 

grained. The memory size available for a Map or Reduce 

task is set in a static configuration file, and is fixed at 

runtime. Therefore, even after the Map tasks are 

completed, the buffers used by those tasks cannot be used 

by the Reduce tasks. Second, the memory mainly used by 

the Map tasks is the intermediate buffer. When the buffer 

cannot accommodate the intermediate data, the entire 
intermediate data will be spilled to the local disk. For 

example, if the intermediate data for a Map task are 100 

MB, but the buffer size is only 80 MB, then the 

intermediate data will be spilled to the disk as an 80 MB 

file and a 20 MB file. As the result, the final merge-sort 

phase in Hadoop will be largely affected by reading an 80 

MB file from the disk. Finally, although different Map 

tasks may produce the intermediate data with different 

sizes (e.g., the “grep” application), Hadoop does not 

provide the mechanism for the concurrently running Map 

tasks to coordinate their memory usage with each other. 
 

The I/O operations may also cause very inefficient usage 

of resources. Firstly, a merge-sort algorithm is widely used 

in Hadoop. In this algorithm, the operations of CPU 

computing (sort) and disk spilling are mashed together. 

There are a multitude of I/O waits during this procedure. 

Secondly, parallel I/O is performed in Hadoop whenever 

possible. Parallel I/O may cause vast disk seeks. 

Especially, the situation may become even worse when 

there is only one disk on a node. Finally, as mentioned 

above, the Reduce tasks will have to pull the output files 

of the Map tasks, which should be performed as early as 
possible in order to improve the read performance. 
 

II. RELATED WORK 

 
The existing system is that these jobs run multiple tasks in 

parallel and a job is sped up only when inputs of all such 

parallel tasks are cached. Indeed, a single task whose input 

is not cached can slow down the entire job. To meet this 

“all-or-nothing” property, we have built PACMan, a 

caching service that coordinates access to the distributed 

caches. This coordination is essential to improve job 

completion times and cluster efficiency. To this end, we 

have implemented two cache replacement policies on top 

of PACMan’s coordinated infrastructure LIFE that 

minimizes average completion time by evicting large 

incomplete inputs, and LFU-F that maximizes cluster 
efficiency by evicting less frequently accessed inputs. In 

exiting HaLoop, a modified version of the Hadoop 

MapReduce framework that is designed to serve these 

applications. HaLoop not only extends MapReduce with 

programming support for iterative applications, it also 

dramatically improves their efficiency by making the task 

scheduler loop-aware and by adding various caching 

mechanisms. We evaluated HaLoop on real queries and 

real datasets. Compared with Hadoop, on average, 

HaLoop reduces query runtimes by 1.85, and shuffles only 
4% of the data between mappers and reducers. 

 

The memory management in Mammoth and Spark are 

rather different. Mammoth is based on Map- Reduce. We 

have carefully analysed the characteristics of memory 

usage in different phases of the MapReduce framework, 

and designed a novel rule-based heuristic to prioritize 

memory allocations and revocations among execution 

units (mapper, shuffler, reducer, etc.). In this way, we can 

maximize the holistic benefits of the Map/Reduce job 

when scheduling each memory unit. In Spark, the memory 

can be used for the resilient distributed data sets (RDD) 
cache and running the framework itself. As for the RDD 

cache, it depends on the users themselves when and how 

the data are cached, which increases the uncertainty of the 

memory usage. For the iterative and the interactive 

applications, caching the frequently used RDDs will 

significantly improve the applications performance. 

However, for many batch processing applications, the 

RDD cache cannot exhibit its advantages, and therefore 

those applications can only rely on the memory 

management in the Spark framework itself. Spark directly 

requests and revokes the memory from the JVM, and does 
not have a global memory manager in the application level. 

Spark uses the hash table to aggregate the data, which is 

different from the sort way used by Mammoth and Hadoop. 

When the memory is sufficient, hash will certainly be 

quicker than sort. However, when the memory is 

insufficient, it will have to spill the data to disks, and its 

performance will decrease significantly. Thanks to the 

holistic manner of memory usage, Mammoth can adapt 

much better to various memory situations, even when the 

memory is insufficient. On the contrary, the performance 

achieved by Spark is excellent when there is the sufficient 

memory, but not so when the memory is insufficient. 
 

Spark and Mammoth are different. Spark writes the data to 

the disk on one side and reads them from the disk on the 

other, while Mammoth stores the Map tasks results in the 

Send Buffer, and sends them to the Reduce Tasks Receive 

Buffer directly (Mammoth will write the data in the Send 

Buffer to the disks only for the purpose of fault tolerance). 

Another existing system use Main Memory Map Reduce 

(M3R) is a new implementation of the Hadoop Map 

Reduce (HMR) API targeted at online analytics on high 

mean-time-to-failure clusters.  
 

It does not support resilience, and supports only those 

workloads which can fit into cluster memory. In return, it 

can run HMR jobs unchanged -- including jobs produced 

by compilers for higher-level languages such as Pig, Jaql, 

and System ML and interactive front-ends like IBM Big 

Sheets while providing significantly better performance 

than the Hadoop engine on several workloads (e.g. 45x on 

some input sizes for sparse matrix vector multiply). M3R 

also supports extensions to the HMR API which can 

enable Map Reduce jobs to run faster on the M3R engine, 
while not affecting their performance under the Hadoop 

engine. 
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III. PROPOSED SYSTEM 

 
MapReduce approach aiming to maximize data locality 

and task parallelism of MapReduce applications on 

Hadoop. Reuse and adapt an efficient MapReduce 

implementation for shared memory multiprocessor to 

Hadoop, called MJVM (multi JVM). MapReduce on 

multicore and aggressively exploits task parallelism and 

data locality on multicore. The proposed scheduling 

algorithm and find the most suitable runtime environment 

for execution on datasets of varying sizes. The proposed 

design a novel parallel memory allocation and revocation 

among execution units (mapper, shuffler, reducer, etc.), to 

maximize the holistic benefits of the Map/Reduce job 
when scheduling each memory unit. 

 

A. Load dataset from HDFS 

1) To start the file read operation, client opens the 

required file by calling open() on Filesystem object 

which is an instance of DistributedFileSystem. Open 

method initiate HDFS client for the read request. 

2) DistributedFileSystem interacts with Namenode to get 

the block locations of file to be read. Block locations 

are stored in metadata of name node. For each block, 

Namenode returns the sorted address of Datanode that 
holds the copy of that block. Here sorting is done 

based on the proximity of Data node with respect to 

Namenode, picking up the nearest Data node first. 

3) Distributed File System returns an FS Data Input 

Stream, which is an input stream to support file seeks 

to the client. FS Data Input Stream uses a wrapper 

DFS Input Stream to manage I/O operations over 

Name node and Data node. Following steps are 

performed in read operation. 

a) Client calls read() on DFS Input Stream. 

DFSInputStream holds the list of address of block 

locations on Datanode for the first few blocks of the file. It 
then locates the first block on closest Datanode and 

connects to it. 

b) Block reader gets initialized on target Block/Datanode 

along with below information: 

 Block ID. 

 Data start offset to read from. 

 Length of data to read. 

 Client name. 

c) Data is streamed from the Datanode back to the client in 

form of packets, this data is copied directly to input buffer 

provided by client’s client is reading and performing 
checksum operation and updating the client buffer 
 

d) Read () is called repeatedly on stream till the end of 

block is reached. When end of block is reached 
DFSInputStream will close the connection to Datanode 

and search next closest Datanode to read the block from it. 

 

4) Blocks are read in order, once DFSInputStream done 

through reading of the first few blocks, it calls the 

Namenode to retrieve Datanode locations for the next 

batch of blocks. 

5) When client has finished reading it will call Close() 

on FSDataInputStream to close the connection. 

6) If Datanode is down during reading or 

DFSInputStream encounters an error during 
communication, DFSInputStream will switch to next 

available Datanode where replica can be found. 

DFSInputStream remembers the Datanode which 

encountered an error so that it does not retry them for 

later blocks. 

 

B. Dynamic Slot allocation for MAP/Reduce 

MapReduce suffers from a under-utilization of the 

respective slots as the number of map and reduce tasks 

varies over time, resulting in occasions where the number 

of slots allocated for map/reduce is smaller than the 

number of map/reduce tasks. Our dynamic slot allocation 
policy is based on the observation that at different period 

of time there may be idle map (or reduce) slots, as the job 

proceeds from map phase to reduce phase. We can use the 

unused map slots for those overloaded reduce tasks to 

improve the performance of the MapReduce workload, 

and vice versa. For example, at the beginning of 

MapReduce workload computation, there will be only 

computing map tasks and no computing reduce tasks, i.e., 

all the computation workload lies in the map-side. In that 

case, we can make use of idle reduce slots for running map 

tasks. That is, we break the implicit assumption for current 
MapReduce framework that the map tasks can only run on 

map slots and reduce tasks can only run on reduce slots. 

Instead, we modify it as follows: both map and reduce 

tasks can be run on either map or reduce slots. 

 

However, there are two challenges that should be 

considered as follows: 

1) Intra-phase dynamic slot allocation. Each pool is split 

into two sub-pools, i.e., map-phase pool and reduce-

phase pool. At each phase, each pool will receive its 

share of slots. An overloaded pool, whose slot 

demand exceeds its share, can dynamically borrow 
unused slots from other pools of the same phase. For 

example, an overloaded map-phase Pool 1 can borrow 

map slots from map-phase Pool 2 or Pool 3 when Pool 

2 or Pool 3 is under-utilized, and vice versa, based on 

max-min fair policy. 

2) Inter-phase dynamic slot allocation. After the 

intraphase dynamic slot allocation for both the map-

phase and reduce-phase, we can now perform 

dynamic slot allocation across typed phases. That is, 

when there are some unused reduce slots at the reduce 

phase, and the number of map slots at the map phase 
is insufficient for map tasks, it will borrow some idle 

reduce slots for map tasks, to maximize the cluster 

utilization, and vice versa. 
 

3) Memory Optimization 
The Multi JVM that allows the correct functioning of the 

Hadoop jobs. To summarize: 

 Use the latest (stable) Linux distribution that allows 

for the correct functioning of the Hadoop jobs 

 Use the latest (stable) Hadoop distribution for the 

Hadoop workload at hand  

 Use the M JVM and 3d-party libraries that the 

underlying Hadoop workload depends on 
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Reader and Spiller to overlap the I/O operations mainly 

use the parallel multi-buffer. However, it is likely that the 
CPU computation or the disk I/O operations become the 

performance bottleneck when both CPU computation and 

I/O operations are being performed. For example, if the 

CPU produces the data faster than the disk I/O, the disk 

I/O becomes the performance bottleneck and the data will 

accumulate in the buffer queue. Otherwise, the CPU 

computation is the bottleneck. This is the reason why 

every queue in Spiller or Reader has a threshold memory 

size of 10 MB by default. Once the size of the 

accumulated data exceeds the threshold of the queue, the 

CPU will be blocked until there is the spare space in the 

queue. Once there are the data added to the queue, it will 
be written to the disk soon. The situation for Reader is the 

same, and therefore its discussion is omitted. 

 

The Scheduler executes as a parallel model (i.e., a multi 

instance) in the execution engine. A simple design is to 

design a parallel component that is responsible for all 

memory allocations and revocations. However, such a 

design will cause the Cache Scheduler to become a 

performance bottleneck at runtime. This is because the 

cache scheduler must interact with the map/reduce tasks at 

runtime to assign and recycle memory, and the interactions 
can be very frequent. 

 

C. Data Optimization 

Dynamic job priorities are used in HSA for reducing the 

latency of variable length concurrent jobs, while 

maintaining data locality. The dynamic scheduling 

algorithm considers the estimated runtime, job size, and 

waiting time of the job in the queue. The waiting time is 

increased as the job waits in the queue, whereas the 

remaining size of the job is reduced when its individual 

tasks are completed. 

 
HYBRID SCHEDULING ALGORITHM (HCA) 

Based on the experimental results and analysis, we 

propose a hybrid scheduler for scalable and heterogeneous 

Hadoop systems. Propose a Hybrid Scheduler algorithm 

based on dynamic priority in order to reduce the latency 

for variable length concurrent jobs, while maintaining data 

locality.  

 

Input: Q: queue of incoming jobs; Inputload: number of 

clients for transactional or data size for MapReduce job; P 

CLUSTER: cluster of physical nodes; V CLUSTER: 
cluster of virtual nodes; JCTdesired[]: vector of jobs 

desired completion times. 

 

1:   for each job Ji in Q=J1,J2,...,Jn do 

2:   if Ji ∈  transactional workload then 

3:   Place Ji on V CLUSTER 

4:   else if Ji ∈  batch MapReduce workload then 

5:   Profile Ji using MJVM Algorithm 1 to obtain the 

vector of estimated job completion time   

      (JCTestimated[]). 

6:   if JCTestimated[i] ≥ JCTdesired[i] then  
7:   Place Ji on P CLUSTER 

8:   else 

9:   Place Ji on V CLUSTER 

10: end if 
11: end if 

12: return jobs assigned to P CLUSTER and V CLUSTER 

13: end for 

 

The dynamic priorities can accommodate multiple task 

lengths, job sizes, and job waiting times by applying a 

MJVM for job task processor assignment. The estimated 

runtime of Map and Reduce tasks are provided to the HCA 

dynamic priorities from the historical Hadoop log files. In 

addition to dynamic priority, we implement a reordering of 

task processor assignment to account for data availability 

to automatically maintain the benefits of data locality in 
this environment. 

 

IV. EXPERIMENTAL RESULTS 

 

The size of intermediate data has a big impact on 

performance of Hadoop. Three typical built-in benchmark 

applications in Hadoop are used in these experiments: 

Word Count without Combiner, Sort and Word-Count 

with combiner (WCC). These three benchmarks represent 

different relations between intermediate data and input 

data. Word Count without combiner, Sort, and Word-
Count with combiner represent the cases where the size of 

intermediate data is larger than, equal to and smaller than 

the size of input data, respectively. 

 

WordCount is a canonical MapReduce application, in 

which the Map function translates every word in the input 

data to a <word; 1> pair in the intermediate data and the 

Reduce function sums the word’s occurrences and 

transmits a <word;N> pair. WordCount without combiner 

refers to this version of WordCount. Suppose that the 

average length of the words is x bytes. In the intermediate 

data, the value of the <key; value> pair is an integer and 
its length is 4 bytes in Java. Then the ratio between the 

size of the intermediate data and the size of the input data 

is 4 x.  

 

The Word Count with Combiner refers to Word Count 

application with a combiner function. The combiner 

function aggregates the Map task’s results by summing up 

the word’s occurrences and transmitting a <word;N> pair 

for a map task. Based on this function, the intermediate 

data will be <word;N> pairs, which will be smaller than 

the input words. Sort is the useful measurement of 
MapReduce performance, in which the MapReduce 

framework will sort the data automatically, and the Map 

function just transmits all the input <key; value> items as 

the intermediate items. 

 

TABLE I 

COMPARE PERFORMANCE RELATIVE TO 

AVAILABLE MEMORY 

 



IARJSET      ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 3, Issue 6, June 2016 
 

Copyright to IARJSET                                  DOI 10.17148/IARJSET.2016.3604                                         23 

 
Fig. 1 Performance relative to available memory. 

 
TABLE III 

THE PERFORMANCE RELATIVE TO 

INTERMEDIATE DATA SIZE FOR WC 

 
 

 
Fig. 2 Compare Job execution Time for WC 

 
TABLE IIIII 

PERFORMANCE COMPARISON AMONG SPARK, 

HADOOP, MODIFIED  MAMMOTH AND PROPOSED 

 
 

 
Fig. 3 Performance comparison among Spark, Hadoop, 

Mammoth and Proposed 
 

The proposed system will compare the performance of 

Modified Mammoth and Hadoop in terms of i) job 

execution time, ii) CPU utilization, and iii) I/O utilizations. 

Random writer (native in Hadoop) produces the input data 
set of Sort. The size of the data set for Sort is 320 GB, 5 

GB for each slave node. The input data set for Word 

Count is produced by random text writer (native in 

Hadoop too), and the size is also 320 GB with 5 GB for 

each slave node. Each job is run independently for three 

times and the collected results are then averaged. 

V. CONCLUSIONS 

 
Multi JVM based Hybrid scheduling algorithm, is 

presented for the Hadoop MapReduce environment. Show 

how the default parameters quickly resolve the data 

dependence between the Map and Reduce phases by 

improving the wait time of the last Map task on average. 

Additionally, we show simulation analysis of the optimal 

service level value and policies for overall performance as 

well as response time under a variety of conditions. In 

conclusion, MJVM is a fast and flexible scheduler that 

improves response time for multi-user Hadoop 

environments. 

 
A new research angle along this research direction is that 

we still manage the memory in the application level, but 

try to manage the memory opportunistically instead of 

carefully crafting the memory usage as we did in proposed. 

In the further, we plan to design and implement the 

opportunistic approach to utilize the memory in proposed 

only focuses on the disk I/O currently. We plan to 

integrate the support of the network I/O into proposed in 

the future. 
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